Nuclear radiation

From Galactic Library
Jump to navigation Jump to search

Atomic nuclei can store far more energy than chemical bonds. When a high energy nucleus becomes a low energy nucleus, it needs to shed that excess energy somehow. It does this by emitting particles or waves that carry away most of that energy. These particles or waves move away from the nuclear material in all directions – they radiate away, and hence this phenomenon is called nuclear radiation.

A similar process can occur with sub-atomic particles. Some varieties of these can react to distribute their energy among various other kinds of particles or waves that radiate away. Because these particles or waves are also highly energetic, they behave in a very similar fashion to nuclear radiation and can largely be handled in the same way.

(By quantum mechanics, all particles are also waves and all waves can be represented as particles. Consequently, from here on out, we'll just use "particle" to refer to both particle and wave radiation behavior.)

Radioactivity

Nuclei with stored energy can be unstable. Given time, they can spontaneously decay, releasing their energy as radiation. These unstable nuclei are called radioactive, and the process of their decay is radioactivity. Note that, despite having similar sounding names, radioactivity is separate from radiation – if you protect yourself from one, you are not necessarily protecting yourself from the other. Penetrating radiation emerging from radioactivity can get through barriers that will keep the radioactive material out, and all the shielding in the world will not help you if the radioactive material can get to your side of the shielding.

Radioactive material where you do not want it is called radioactive contamination.

The original radioactive nucleus is called the parent nucleus, and the nucleus it decays into is called the daughter nucleus.

Sub-atomic particles behave in the same way, with unstable particles decaying to more stable particles by emitting radiation. They are also radioactive. However, sub-atomic radioactivity tends to occur at a much faster rate than nuclear radioactivity, such that it is essentially instant from a human time scale.

Radiactive decay

In any given span of time, a given fraction of the radioactive material in any sample (as measured from that present at the start of that span of time) will decay. It is convenient to find the time it takes for exactly half of the radioactive material to decay, this is called the half-life and is commonly denoted with in equations. In another half-life after the first, half of the remaining material will decay and thus you will be left with one-half of one-half of the original sample, or one quarter of the original amount. Similarly, after three half-lives, you will have th of the original material; after four half-lives, th of the original material, and so on. In general, after half-lives, of the original sample will still be present. After many half-lives, a sample will have decayed away to the point where it is negligible.

When doing calculations, the half-life can be inconvenient to use. It is more convenient to define a characteristic decay time which is related to the half-life by

After any arbitrary amount of time when starting with an amount of radioactive material, the amount of remaining material will be

If is measured in number of atoms, the rate at which the decays occur is

This rate is called the activity of the sample. Note that while a long half-life means that you need to deal with the radioactivity for a long time, the overall activity will be low. Meanwhile, an isotope with a short half life may go away quickly but will have a high activity during that time.

It is also occasionally useful to note that is the average life span of any given radioactive particle.

Decay chains

You can often find yourself in a situation where a parent nucleus decays into a daughter which is itself unstable. You can get a whole sequence of decays between unstable nuclei before you settle down into a stable state. This is called a decay chain.

It is important to keep decay chains in mind; just because a parent has gone through so many half-lives that essentially none is remaining it does not necessarily mean that all the radioactivity is gone if there are daughter products with longer half-lives that were produced by the sample.

Further, just because the parent to daughter decay might produce a relatively benign form of radiation does not mean that you don't get nastier radiation from decays further down the decay chain.

An example of a decay chain from one of the most common naturally occurring radioactive isotopes on our planet is